Inbred strain

Inbred strains (also called inbred lines, or rarely for animals linear animals) are individuals of a particular species which are nearly identical to each other in genotype due to long inbreeding. A strain is inbred when it has undergone at least 20 generations of brother x sister or offspring x parent mating, at which point at least 98.6% of the loci in an individual of the strain will be homozygous, and each individual can be treated effectively as clones. Some inbred strains have been bred for over 150 generations, leaving individuals in the population to be isogenic in nature.[1] Inbred strains of animals are frequently used in laboratories for experiments where for the reproducibility of conclusions all the test animals should be as similar as possible. However, for some experiments, genetic diversity in the test population may be desired. Thus outbred strains of most laboratory animals are also available, where an outbred strain is a strain of an organism that is effectively wildtype in nature, where there is as little inbreeding as possible.[2]

Certain plants including the genetic model organism Arabidopsis thaliana naturally self-pollinate, which makes it quite easy to create inbred strains in the laboratory (other plants, including important genetic models such as maize require transfer of pollen from one flower to another).[3][4]

  1. ^ Beck JA, Lloyd S, Hafezparast M, Lennon-Pierce M, Eppig JT, Festing MF, Fisher EM (January 2000). "Genealogies of mouse inbred strains". Nature Genetics. 24 (1): 23–5. doi:10.1038/71641. PMID 10615122. S2CID 9173641.
  2. ^ "Outbred Stocks". Isogenic. Retrieved 28 November 2017.
  3. ^ Roderick TH, Schlager G (1966). "Multiple Factor Inheritance". In Green EL (ed.). Biology of the Laboratory Mouse. New York: McGraw-Hill. p. 156. LCCN 65-27978.
  4. ^ Lyon MF (1981). "Rules for Nomenclature of Inbred Strains". In Green, Margaret C. (ed.). Genetic Variants and Strains of the Laboratory Mouse. Stuttgart: Gustav Fischer Verlag. p. 368. ISBN 0-89574-152-0.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search